Category Archives: AGILE A/B Testing

Posts on the topic of a/b testing using the AGILE statistical method.

Futility Stopping Rules in AGILE A/B Testing

Stopping for Lack of Effect (Futility)

In this article we continue our examination of the AGILE statistical approach to AB testing with a more in-depth look into futility stopping, or stopping early for lack of positive effect (lack of superiority). We’ll cover why such rules are helpful and how they help boost the ROI of A/B testing, why a rigorous statistical rule […] Read More…

Also posted in A/B Testing, Conversion Optimization, Statistics | Tagged , , , , , , | Leave a comment

Efficient AB Testing with the AGILE Statistical Method

AGILE AB Testing

Don’t we all want to run tests as quickly as possible, reaching results as conclusive and as certain as possible? Don’t we all want to minimize the number of users we send to an inferior variant and to implement a variant with positive lift as quickly as possible? Don’t we all want to get rid of […] Read More…

Also posted in A/B Testing, Conversion Optimization, Statistics | Tagged , , , , , , , , , , , , | Leave a comment

Improving ROI in A/B Testing: the AGILE AB Testing Approach

After many months of statistical research and development we are happy to announce two major releases that we believe have the potential to reshape statistical practice in the area of A/B testing by substantially increasing the accuracy, efficiency and ultimately return on investment of all kinds of A/B testing efforts in online marketing: a free white […] Read More…

Also posted in A/B Testing, Conversion Optimization, Statistics | Tagged , , , , , , , , , , | Leave a comment

The Importance of Statistical Power in Online A/B Testing

Statistical Power and Test Sensitivity

What is Statistical Power? In null-hypothesis statistical testing (NHST) – the procedure most commonly applied in A/B tests, there are two types of errors that practitioners should care about, type I and type II errors. Type I is the probability of the test procedure to falsely reject a true null hypothesis. Type II error is […] Read More…

Also posted in A/B Testing, Conversion Optimization, Statistical Significance, Statistics | Tagged , , , , , | Leave a comment