Author Archives: Georgi Georgiev

Error Spending in Sequential Testing Explained

Sequential Hypothesis Testing with Efficacy and Futility Bound

Sequential analysis of experimental data from A/B tests has been quite prominent in recent years due to the myriad of Bayesian solutions offered by big industry players. However, this type of sequential analysis is not sequential testing proper as these solutions have generally abandoned the idea of testing and therefore error control, substituting it for […] Read more…

Posted in A/B testing, AGILE A/B testing, Statistics | Tagged , , , , , ,

Updates to Our A/B Testing Statistical Calculators

Meta Analysis Statistical Calculator

This short post presents several changes, updates, and new tool functionalities released in the past couple of months – some very recent, some less so. The updates concern all statistical calculators for design and analysis of A/B tests at Analytics-Toolkit.com and consist of the following: New tool: Statistical Calculator for Meta Analysis Quality of life […] Read more…

Posted in Analytics-Toolkit.com | Tagged , , , ,

Frequentist vs Bayesian Inference

Frequentist vs Bayesian Inference

In this article I’m revisiting* the topic of frequentist vs Bayesian inference with specific focus on online A/B testing as usual. The present discussion easily generalizes to any area where we need to measure uncertainty while using data to guide decision-making and/or business risk management. In particular, I will discuss each of the following five […] Read more…

Posted in A/B testing, Bayesian A/B testing, Statistics | Tagged , , , , , , ,

Underpowered A/B Tests – Confusions, Myths, and Reality

Underpowered A/B Tests

In recent years a lot more CRO & A/B testing practitioners have started paying more attention to the statistical power of their online experiments, at least based on my observations. While this a positive development for which I hope I had contributed somewhat, it comes with the inevitable confusions and misunderstandings surrounding a complex concept […] Read more…

Posted in A/B testing, Statistics | Tagged , , , , , ,

The Perils of Poor Data Visualization in CRO & A/B Testing

As any UX & CRO expert should now, the way we present information matters a lot both in terms of how well it is understood and in terms of the probability that it will lead to the desired action. A/B testing calculators and other tools of the trade are no exception and here I will […] Read more…

Posted in A/B testing, Conversion optimization, Statistics | Tagged , , , , , , ,

The Cost of Not A/B Testing – a Case Study

The cost of not a/b testing

Most of the time when discussing A/B testing, regardless of context, we discuss costs such as the expense of running an experimentation program, of shipping ‘winners’ to production. Only rarely do I see references to the less obvious, but usually more important costs in terms of opportunity cost (incurred during testing) and the cost of […] Read more…

Posted in A/B testing | Tagged , , , ,

What Can You Learn From Running an A/B Test for 2 Years?

AB Test Case Study

We just concluded an A/B test on Analytics-Toolkit.com that has been left to run for just over 2 years. And it failed, as in failing to demonstrate a statistically significant effect based on the significance threshold it was designed for. Has it been a waste of time, though, or can we actually learn something from […] Read more…

Posted in A/B testing, Conversion optimization | Tagged , , , ,

Does Your A/B Test Pass the Sample Ratio Mismatch Check?

Sample Ratio Mismatch AB Testing

Most, if not all successful online businesses nowadays rely on one or more systems for conducting A/B tests in order to inform business decisions ranging from simple website or advertising campaign interventions to complex product and business model changes. While testing might have become a prerequisite for releasing the tiniest of changes, one type of […] Read more…

Posted in A/B testing, Statistics | Tagged , , , , ,

AGILE A/B Testing Update: Custom API & Support for Non-Binomial Data

AGILE A/B Testing Tool Updates

I’m happy to announce the release of two long-awaited features for our A/B Testing Calculator: Support for non-binomial metrics like average revenue per user A new custom API for sending experiment data to the calculator Below is an explanation of each of these new features in some detail. Support for Non-Binomial Data While our more […] Read more…

Posted in A/B testing, AGILE A/B testing, Analytics-Toolkit.com | Tagged , , , , , , ,

Statistical Methods in Online A/B Testing – the book

Book Cover Statistical Methods Online A/B Testing

The long wait is finally over! “Statistical Methods in Online A/B Testing” can now be found as a paperback and an e-book on your preferred Amazon store. The book is a comprehensive guide to statistics in online controlled experiments, a.k.a. A/B tests, and tackles the difficult matter of statistical inference in a way accessible to […] Read more…

Posted in A/B testing, Conversion optimization, Statistics | Tagged , , , ,

A/B Testing with a Small Sample Size

AB Testing Small Business

The question “How to test if my website has a small number of users” comes up frequently when I chat to people about statistics in A/B testing, online and offline alike. There are different opinions on the topic ranging from altering the significance threshold, statistical power or the minimum effect of interest all the way […] Read more…

Posted in A/B testing, Conversion optimization, Statistics | Tagged , , , , , ,

Online glossary of A/B testing terms and abbreviations

AB testing glossary

We are happy to present a brand new addition to our website: a comprehensive A/B testing glossary containing terms and abbreviations used testing as part of conversion rate optimization (CRO).  Definitions start from very basic things such as “A/B test“, “mean“, “conversion rate” and “revenue per user“, go through “hypothesis“, “null hypothesis“, “standard deviation“, “p-value” […] Read more…

Posted in A/B testing, Conversion optimization, Statistics | Tagged , , ,