Representative samples and generalizability of A/B testing results

Representative samples and generalizability of AB testing results

I see a nice trend in recent discussions on A/B testing: more and more people realize the need for proper statistical design and analysis which is a topic I hold dear as I’ve written dozens of articles and a few white-papers on. However, there are cases in which statistical validity is discussed without consideration for […] Read More…

Posted in A/B Testing, Conversion Optimization | Tagged , , , , , , | Leave a comment

Designing successful A/B tests in Email Marketing

The process of A/B testing (a.k.a. online controlled experiments) is well-established in conversion rate optimization for all kinds of online properties and is widely used by e-commerce websites. On this blog I have already written in depth about the statistics involved as well as the ROI calculations in terms of balancing risk and reward for […] Read More…

Posted in A/B Testing, Conversion Optimization, Statistical Significance, Statistics | Tagged , , , , , , , , , , | Leave a comment

Analysis of 115 A/B Tests: Average Lift is 4%, Most Lack Statistical Power

Observed Percent Change Significant

What can you learn from 115 publicly available A/B tests? Usually, not much, since in most cases you would be looking at case studies with very basic data about what was tested and the outcome of the A/B test. Confidence intervals, p-values and other measurements of uncertainty will often be missing, and when present they […] Read More…

Posted in A/B Testing, Conversion Optimization | Tagged , , , , , , , , , , , | 2 Responses

Confidence Intervals & P-values for Percent Change / Relative Difference

In many controlled experiments, including online controlled experiments (a.k.a. A/B tests) the result of interest and hence the inference made is about the relative difference between the control and treatment group. In A/B testing as part of conversion rate optimization and in marketing experiments in general we use the termĀ “percent lift” (“percentage lift”) while in […] Read More…

Posted in A/B Testing, Conversion Optimization, Statistical Significance, Statistics | Tagged , , , , , , , , , | Leave a comment

Affordable A/B Tests: Google Optimize & AGILE A/B Testing

The problem most-often faced by owners of websites who want to take a scientific approach to improving them by using A/B testing is that they might have relatively small revenue. Thus, when the ROI calculation for the A/B test is done it might turn out that it is economically unfeasible to test. In some cases, […] Read More…

Posted in A/B Testing, AGILE A/B Testing, Analytics-Toolkit.com, Conversion Optimization | Tagged , , , , , , | Leave a comment

The Google Optimize Statistical Engine and Approach

Frequentist vs Bayesian A/B testing - Google Optimize

Updated Sep 17, 2018: Minor spelling and language corrections, updates related to role of randomization and external validity / generalizability. Google Optimize is the latest attempt from Google to deliver an A/B testing product. Previously we had “Google Website Optimizer”, then we had “Content Experiments” within Google Analytics, and now we have the latest iteration: […] Read More…

Posted in A/B Testing, Conversion Optimization, Statistics | Tagged , , , , , , , , , , , , | 2 Responses